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ANALYSIS OF A CLASS OF NONCONFORMING FINITE 
ELEMENTS FOR CRYSTALLINE MICROSTRUCTURES 

PETR KLOUCEK, BO LI AND MITCHELL LUSKIN 

ABSTRACT. An analysis is given for a class of nonconforming Lagrange-type 
finite elements which have been successfully utilized to approximate the solu- 
tion of a variational problem modeling the deformation of martensitic crystals 
with microstructure. These elements were first proposed and analyzed in 1992 
by Rannacher and Turek for the Stokes equation. Our analysis highlights the 
features of these elements which make them effective for the computation of 
microstructure. New results for superconvergence and numerical quadrature 
are also given. 

1. INTRODUCTION 

Recent years have seen the development of a continuum theory for martensitic 
crystals based on the minimization of the Ericksen-James elastic energy [2, 3, 13, 14, 
17, 19]. The elastic energy density attains a minimum value at several symmetry- 
related deformation gradients. Thus, the deformations of energy-minimizing se- 
quences often exhibit a microstructure the simplest of which are fine-scale layers 
in which the deformation gradient is nearly constant and across which the deforma- 
tion gradient oscillates between the energy wells-to allow the effective energy of 
a deformation to be that of a macroscopic or relaxed energy. Further, the parallel 
planes defining the layering in the microstructure are constrained by the symmetry 
of the energy density to be a member of a finite family of parallel planes. 

If the deformation is constrained on the boundary, then the deformation can- 
not generally attain a minimum energy by forming a microstructure with layers 
of nonzero thickness [3]. Rather, minimizing sequences of deformations must be 
constructed from layers with a thickness which converges to zero. Such minimizing 
sequences define the solution to the variational problems. They can be described 
physically by the notion of microstructure and mathematically by the Young mea- 
sure [2, 3, 17, 19]. 

When an energy minimizing deformation is sought in a finite element space, the 
fineness of the layers is limited not only by the mesh size, but also by the nature of 
the finite element used. The most accurate finite element spaces will be those which 
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can approximate microstructures with the most fine-scale layers possible on meshes 
which are oriented arbitrarily with respect to the layers defining the microstructure. 

Several approaches have been developed for the finite element approximation of 
microstructure. The most commonly used finite element spaces are the conforming 
spaces with continuous deformations which are either piecewise linear or multi- 
linear with respect to some mesh. Although these spaces can approximate well 
microstructure with layers which are oriented with respect to the mesh, we have 
had difficulty approximating microstructure with these conforming spaces when the 
layers are not oriented with respect to the mesh. We have not generally been able 
to obtain solutions with conforming spaces which have a layer thickness of less than 
three elements if the grid is not oriented so that the planes across which the gra- 
dients of the deformations in the conforming finite element space are allowed to be 
discontinuous are not parallel to the layers. 

Two alternative methods have been developed to allow microstructure to be ap- 
proximated on meshes which are not aligned with the microstructure. The first 
method was that of reduced integration of the multilinear element [8, 9, 12]. This 
method has been effectively used to compute microstructure with fine-scale layers 
on meshes which are not oriented with respect to the microstructure. For Laplace's 
equation on a uniform grid, the deformation computed with this method can be 
shown to converge strongly, but the deformation gradients do not converge strongly. 
This would not be an effective method for the minimization of a quasi-convex energy, 
however this method can be used effectively with the nonconvex Ericksen-James 
energy since its energy-minimizing deformations converge strongly while its gradi- 
ents do not converge strongly. Most importantly, numerical experiments indicate 
the convergence of the microstructure or Young measure for the piecewise constant 
projection of the gradients of the deformation. 

The approach analyzed here is that given by a family of nonconforming finite 
elements. The use of nonconforming finite elements is intuitively appealing for 
problems with microstructure because the admissible deformations have more flex- 
ibility to approximate oscillatory functions. The nonconforming elements that we 
study in this paper were first proposed and analyzed by Rannacher and Turek for 
solving the Stokes problem [24]. Recently, we have used these finite elements to 
simulate the deformation of martensitic crystals with microstructure [18], and we 
found that with a suitable numerical quadrature they produce a very robust approx- 
imation method. Our analysis demonstrates that the deformation, as well as the 
deformation gradient, converges strongly for second-order, linear elliptic problems. 

The first version of the considered elements is a finite element defined on rect- 
angles (respectively, rectangular parallelepipeds) with degrees of freedom given by 
the values at midpoints of edges of the rectangles (respectively, the centers of the 
faces of the rectangular parallelepipeds). The second version is a finite element 
defined on rectangles (respectively, rectangular parallelepipeds) with the degrees of 
freedom given by the averages over the four edges of the rectangles (respectively, 
the six faces of the rectangular parallelepipeds). 

Unlike most other nonconforming finite elements, these elements do not have 
any conforming counterparts. Consequently, the error analysis is nontrivial. We 
prove error estimates for these finite element approximations in both the H1 and 
the L2 norms. Our analysis contributes to the understanding of these elements by 
emphasizing their relation to the conforming multilinear elements. We also give new 
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superconvergence estimates for the error of the deformation gradient. In view of 
practical computations, especially for the computation of material microstructures, 
we also give an analysis of the effect of the numerical integration. 

The convergence of the approximation of the microstructure of the deformation 
gradient of a crystal by continuous, piecewise linear finite element methods has 
been proven in [10, 11] for one-dimensional model problems for norms which mea- 
sure the weak convergence of nonlinear functions of the deformation gradient, and 
the convergence of the three-dimensional approximation of the microstructure of 
the magnetization in the micromagnetics model for ferromagnetics has been proven 
for related norms [22]. These norms are stronger than the L2 norm, which does 
not control oscillations in the gradient, and are weaker than the H1 norm, which 
does not allow oscillations in the gradient for convergent sequences. The above 
analyses and the multidimensional analysis in [5, 6] proceed by demonstrating that 
the deformation gradient (or magnetization in the micromagnetics problem) con- 
verges weakly and that the approximate deformation gradient (or magnetization) 
must lie in arbitrarily small neighborhoods of the minima of the energy density. 
Thus far, these techniques have not yet made possible the rigorous analysis of the 
numerical approximation of microstructure for realistic, multidimensional models 
for the deformation of crystals [2, 3, 9]. 

Throughout this paper we will mostly focus on the three-dimensional approx- 
imations, although similar results hold in two dimensions. For simplicity, let 
Q = (0, L1) x (0, L2) x (0, L3) be a rectangular parallelepiped with faces paral- 
lel to the coordinate planes. The points of ? will be denoted by (x, y, z) or by 
(x1, x2, x3) as appropriate. Results similar to those presented in this paper are 
valid for domains which are the union of rectangular parallelepipeds except that 
the rate of convergence in the L2 norm may be reduced since the regularity of the 
solution of the dual problem with L2 data may be reduced. 

We consider the following divergence-type second-order elliptic boundary value 
problem, 

u- a aual--- au -a au + c u = f, in Q. (1.1) d~x Ax ay ay az az 
u = 0O on a&, 

where a1,a2,a3 E Wl'?(Q), a1,a2,a3 > ao = constant > 0, a.e. Q, c E LOO(o), 
c > 0, a.e. Q, f E L2(f?). We define a(., .): H1(Q) x H1(Q) - IR by 

I' ( &v w &v Aw &v w A a(v,w) a} al- + a22 + a3 
a 

+ CVw) dxdydz. 

It is obvious that a(., ) is symmetric, continuous and bilinear. Furthermore, by the 
Poincar' inequality, a(., ) is Ho (?)-elliptic. We denote by (,.) the L2(f?) inner 
product. The existence and uniqueness of the solution to the problem (1.1) follow 
from the Lax-Milgram lemma. The following theorem gives the regularity of the 
solution [15, 16]. 

Theorem 1.1. For any f E L2 (?), there exists a unique u E Ho (Q) n H2 (2) such 
that 

(1.2) a(u,v) = (f,v), Vv E Ho0 (Q) 
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Furthermore, there holds the a priori estimate 

(1.3) IIUII2,D ? ClIf 110,D, 

where C = C(al, a2, a3, c, 2) > 0 is a constant. 

The rest of this paper is organized as follows. In ?2 we define the finite elements 
and their corresponding finite element spaces based on a rectangular partition of 
Q. We then prove a Poincare-type inequality for the test functions. In ?3 we give 
the error estimates in both the H1 and the L2 norms. In ?4, we discuss the relation 
of the considered finite elements to multilinear finite elements. In ?5, we give a 
superconvergence estimate for the gradients based on cubic partitions. Finally, in 
?6, we apply numerical quadrature to the finite element approximations, and we 
study the rates of convergence for several resulting schemes. 

2. THE FINITE ELEMENTS 

The first finite element is defined by the triple (Q, PQ, EPQ), where Q -[a -r, 
a + r] x [b - s, b + s] x [c - t, c + t] is a rectangular parallelepiped with its center at 
(a, b, c) and the lengths of its edges 2r, 2s, 2t, where r, s, t > 0, 

(2.1) PQ = Span { 1, x, y, z, (x) - (Y) (x) - (z) } I 

(2.2) EQ = q(Mi): i = 1, ... 6 }, 

where Mi, i = 1,... , 6, are the centers of the faces of Q. This Lagrange-type 
element is well defined since it is easy to verify that EP is PQ-unisolvent, i.e., for 
any given ai E IR, i 1,..., 6, there exists a unique q E PQ such that 

q(Mi) = aj, i = 1,-...,6. 

We define i = 2o(x,y,z) E PQ, i = 1,... 6, such that 

(2.3) i (MWj) = &ij, ij = 1,...,6, 

by permuting the terms (x - a)/r, (y - b)/s and (z - c)/t in the polynomial 

1 (IX-a) 2 1 y-b) 2 1 Z _C) 2 Z _ C 1 

(2.4) ~0(,Y 
) - 

'~ c 

where E = ?1. Thus, it follows that 
{f}oj}- 

is the standard basis for the finite 
element (Q, PQ, El ). We then define the affine family of finite elements (R, PR, El), 
where R is a rectangular parallelepiped. We note that in general V Vq 74 0 for 

E PQ unless r = s = t. 
Next, we define the averaged version of the preceding finite element to be the 

triple (Q, PQ, Ea). The polynomial space PQ is the same as defined in (2.1) and 
the set of degrees of freedom is defined by 

(2.5) Ea qdS: i = 1,...,6 
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where Fi, i = 1,... , 6, are the faces of the rectangular parallelepiped Q and 

fF LI 1IFJ 

for faces F C aQ, where JFt denotes the area of the face F. This finite element is 
well defined since EQ is PQ-unisolvent. This can be easily checked by considering 
the six polynomials 4'i = 4i (x, y, z), i = 1,... , 6, obtained by permuting the terms 
(x - a)/r, (y - b)/s and (z - c)/t in the polynomial 

(2.6) 0(xyZ)= _ ( + + + C 

where e = ?1. It is obvious that 4i E PQ, i = 1,... , 6, and it is easily checked that 
with a suitable labeling of the indices, 

(2.7) j f dS = j 

Thus, {fI}.=1 is the standard basis for the finite element (Q, PQ, Z). Again, we 
define the affine family of finite elements (R,PR,EaZ), where R is a rectangular 
parallelepiped. 

To construct a rectangular partition Th of Q, we define one-dimensional partitions 
of [O,Lk], for k= 1,2,3, by 

?=X < xk < ... < Xkk = Lk, 

where mk are positive integers. We then define the rectangular parallelepipeds 

,i2,i3 [Xi 1 XI] X [Xi2l, Xi2] X [ x3v], 1 < i <_ nl, ..., 1 < i3 < Tn3, 

and the rectangular partition 

Th {Ri 1i2,i3 :1 < il < n1,...,1 < i3 < M3} 

with the mesh size parameter h defined by h = max{hk 1 < k < 3}, where 
hk- max{ xik- ke: 1 < i < Mk} is the maximal discretization size in the kth 
coordinate direction for k = 1, 2,3. 

For the first finite element, we define the set of nodal points Nh to be the set 
of all the centers of faces of elements in Th. The finite element spaces over the 
partition Th are then defined respectively to be 

VhP {Vh E L2 Q) VhIR E PR, VR ETh; adjoiningVhhave the same 

values at shared nodal points, i.e., Vh is continuous on Nh }, 

{Vh E L2(f2) VhIR E PR, VR E Th; 

Vh I R, dS = jVh I R, dS, V faces F = RI n AR" #4 0, RI, R" E Th}. 
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To solve the Dirichlet problem (1.1), we define 

V={pVhE Vhp Vh= O on Nhn af} 

vOh V h E h V h dS = 0 ,Vfaces F c aR naf? 74 0, R E Th} 

It is obvious that all of the spaces Vhp, Voph, Vha and Voah are finite-dimensional 
subspaces of L2 (?). They are also affine finite element spaces [7]. For Vh E Vhp (or 
Voph, Vha, Voah), we have in general that Vh ? C(Q) since Vh is continuous necessarily 
only at centers (or at some other points in the case of the Vha-approximation) of 
faces of adjacent elements. Therefore, VJP (or Vop Vha, Voah) g C(Q)) and, hence, 
VJP (or VophVhaVoah) g H1(P). Thus, in view of solving a second-order elliptic 
boundary value problem, the finite elements are nonconforming. 

For convenience, we define for an integer k > 0 and p E [1, o0] the space 

W/'P(f) _ {v E LP(P): VIR E WkP(R), VR E Th 

and equip Wk' P(Q) with the following seminorm and norm: 

K kph - t (ZRCh | P if 1 < p < oo, 

maxRh I |k,oo,R, if p = 0c; 

K Hkph -{(ZRCTh H1 lK~PR) i if 1 < p < 00, 

maXRCTh || '|k,oo,R, if p = 0, 

where, for R E Th, I k,p,R and 11 Hlk,p,R are the usual seminorm and norm on the 
Sobolev space WkP(R) [1]. If p = 2 we write Hhk(Q) for Wk' P(Q) and omit p in all 
the above seminorm and norm expressions. 

Now it is obvious that I 11,h defines a norm on VOhP and Voah. We next prove 
a Poincar'-type inequality for functions in the finite element spaces VOh and Voah. 
This inequality leads to the uniform Vh- and Voh-ellipticity, which is required in 
deriving the second Strang lemma [7, 25]. 

Theorem 2.1. For any Vh E Voph U Voah, we have 

(2.8) |Vh 110 ? 6 h Vhllh+ V2/Lk , k = 1,2,3. - 
a~~~~~Xk o,h 

Proof. Let us fix v _Vh E Voph UVoah. For any x = (x1,x') E Q, wherex= (X2, 3), 

let R = [x" xlX"] x R', where R' = [x271,Xi] X [x371,x3], be such that x- E R. 
Without loss of generality, we assume ii > 2. Denote by v; the restriction of v on 
[x, xi] x R', for j =1,...,m1. If v E VOh, we have 

j vi(x , X)dxl + J Vj+i(xi, xl)dx -I VjJ(xi, x') dx] 0. 
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Consequently, there exists z' = (Z/, Z/) E R' so that 

i1 

(2.9) vi(xOz/) + E [v+j(xi,z') - vj(x,z')] = 0. 

Observe that on each element in Th, 

(2.10) <X E Span{lxk}, k = 1, 2,3. 

By (2.9) and (2.10), we have 

X x X i1_1 I/) + i j-1 I 
V(X) = v1 (X1, I) - V 1 (xi1 ,z') + E [VI( Zx ) -Vj (xi1, Z/)] 

(2.11) 3 

Xk 
aV~l(x) d~ v X dxj, 

ad, f d k + Ekj-1 ax, 

where z = xi1l-. This is also true for v E VP if we choose z' E R' so that (xOz') 
is the center of the face {xA} x R' of the element [xO, x1] x R'. It then follows from 
(2.11), (2.10) and the Cauchy-Schwarz inequality that 

3 xk &v (X) 2 Ml'1xi V &v(X) 2 

(2.12) 6h dxk + dxx. 

Integrating (2.12) over R and summing up the integrals over R E rh, we thus obtain 
(2.8) for k = 1. The same argument applies to k = 2,3. 

3. Hh AND 2 ERROR ESTIMATES 

We define ah(.,.) Hhj(f) X Hh(Q) -> by 

av aw av aw av aw X 
ah(V, W 

JR 
a, 

+a2'+ 
a3 + cVw dxdydz. w) 

RE'h axa +ay~ +ay az 

We also denote Vh = VhP or Vha and VOh = Voph or Voah, respectively. It is clear that 
ah(-,.) is symmetric, continuous and bilinear. By Theorem 2.1, it is also uniform 
VOh-elliptic, i.e., there exists a constant a > 0, independent of h, such that 

(3.1) ah(Vhvh) ?> aCI VI7,h, 1vh E VOh. 

Therefore, by the Lax-Milgram lemma, there exists a unique finite element approx- 
imation Uh E Voh such that 

(3.2) ah(uhvVh) (f vVh), Vvh E VOh- 

In the sequel, the rectangular partitions Th are always assumed to be quasi- 
uniform, i.e., there exists a constant cx > 0, independent of h, such that 
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We denote the Lagrange interpolation operator h: C0(Q) > Vh to be either 

0hp: C(Q) > VhP or Ih0 (Q) - Vh, which are defined respectively for IhPv E VhP 
and Ihv E Vh, by 

IhPv(M) = v(M), VM E Nh, 

jIhv dS = jvdS, V facesF c AR where R E Th, 

for any v E C(Q). We also use the same notation Ih, IhP and Iha to denote the 
restrictions of these operators over an element of the partition Th. 

We use the symbol C to denote a generic constant varying with the context. This 
constant is always assumed to be independent of all the trial and test functions, 
the solution u to (1.2) and the mesh size parameter h unless the dependence is 
otherwise stated. 

Let us recall the following well-known results on the estimates for interpolation 
errors and the inverse estimates for later use [7]. 

Theorem 3.1. For k = 0, 1, 2, we have 

IIIhV -VIk,R < Ch 2kIvI2,R VIR E Th, Vv E H (R) 

||IhV VI|k,h < Ch kIV12,h, Vv E Hh(Q). 

Theorem 3.2. Let k and 1 be two integers such that 0 < k < 1 < 2. Then for any 
R E Th and any Vh E Vh we have 

Vhll,R < Ch kIvhlk,R, 

lVhll,h < Ch kIvhlk,h, 

lVh 1,oo,R < Ch 2kVhh|k,R, 

|Vhll,oo,h < Ch 2kA Vhlk,h- 

Our main results in this section are the error estimates for the finite element 
approximations in the Hhj(2) and the L2 (2) norms. 

Theorem 3.3. Let u E Ho'(Q) oH2(Q) and uh E Voh be the solutions to (1.2) and 
(3.2), respectively. We have 

(3.3) IIU - UhI|m,h < Ch m1u112,?, m = 0,1. 

To prove the theorem, we need some auxiliary lemmas. 

Lemma 3.4. Let R E Th and F C aR be a face of R and let Po E R be an arbitrary 
point. Then the following estimates hold: 

(3.4) w(Po) - wdxdydz ? <Chj VwooR, VW E Wl'(R), 

(3.5) j w- fwdS dS<0Ch2 w1R, Vw E H'(R), p= 1,2, 

(3.6) W2 dS < h IW2 
12 VW E H1(R) 

JOR w2 dS h T ,R + Oh~w 1,Ri 
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Proof. The inequality (3.4) follows easily from the estimate 

W(Po) - f wdxdydz = f[w(Po) - w(x, y, z)] dxdydz 

< w w(Po)-w(x, y, z) I dxdydz 

< - (xy,z)Iwl1,0,Rdxdydz 

for w E W1' (R). 
Next, let R = [a - r, a + r] x [b - s, b + s] x [c - t, c + t] and assume without 

loss of generality that F = {a + r} x [b - s, b + s] x [c- t, c + t]. Denote R = 
[-1,1] x [-1,1] x [-1,1] and F = {1} x [-1,1] x [-1,1], and define the affine 
mapping KR: R > R by K(,,) = (xY, z), where 

(3.7) x =r +a, y= sr+b, z=t(+c. 

For any function w = w(P), P E R, set W? = W o KR. Now by the quasi-uniformity 
of Th and the trace theorem [1] we get that 

(3.8) J w- wdS dS=st j | wdS |dS < Ch ||W| R 

Replacing w by w + c in (3.8) with c any constant, we have by the Bramble-Hilbert 
lemma [7, Theorem 4.1.3] that 

IF w- fwdS dS < Ch 2 inf tRCh I 21 <Oh IW1 

This proves (3.5). 
Finally, by the transformation (3.7), the quasi-uniformity of Th and the trace 

theorem, we have 

J w dS < ChJ w2 dS < Ch2 [J <2 d7d<d( + J WVtl2 <dd7d] 

< Ch2 [h-3 J W2 dxdydz + h-1 JI Vw12 dxdydz] 

leading to (3.6). 

In what follows, for R E Th and a face F C aR, we define the functional TF by 
either TF(W) = w(MF) for w E C(F), where MF is the center of the face F, when 
considering the Vhp-approximation, or by TF(w) = fFwdS for w E L2(F) when 
considering the Vha-approximation. 

Lemma 3.5. For any R E Th and any face F C aR, we have 

[Vh- TF(Vh)] dS < ChIvh 1,R, VVh E Vh. 
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Proof. Without loss of generality, we assume that F = {a + r} x [b - s, b + s] x 
[c-t,ic + t]. Let PF- (a + r, y, z-) E F be such that TF (Vh) = Vh (PF) . Now, by 
the Cauchy-Schwarz inequality, the fact (2.10) that %9h (respectively, %h) depends 
only on y (respectively, z), and the quasi-uniformity of the partitions Trh, we have 

rb+s c+t 

I [Vh -TF(vh)] dS = // [Vh(a + r, y, z) - Vh(a + r, y, z)] dydz 

jb+s jC+t [JY ahv(a + r] Y Z) d dz'] dydz 

? j ~ 
~ {2 [J &vh(a +r, Y' z) dy'] 

+?2 [1 Ovh(a d/ ' ) dz] } dydz 

fb+s c+t fY Ov(yh(a+r yz) 2 dy' 

| vZ a ah (a + r, y) Z2 

+ 2 aJ dzl dyz' 

-s jC-t 
{4 rbs O hY r _t d d 

Z 2 

jb< ] 2t lb_ Oy 2 ?t] - Odh 

? (s (i+sj | 2 dy ? 4t O 2 |dz) K Ch2vhR, 

completing the proof. 

Lemma 3.6. Let R E fh and let F C OR be a face of R. Then, for any trilinear 
function w = w(x, y, z) on R, we have 

(3.9) j(w-Ihw) dS = 0 and TF(w-Ihw) = O. 

Proof. Without loss of generality, let R E fh and F C OR be the same as in the 
proof of Lemma 3.5. If w = 1, x, y or z, then Ihw = w. Hence, (3.9) holds trivially. 
Now if w is not linear but multilinear with respect to the variables x - a, y - b, and 
z - c, then a simple calculation shows that Ihw = 0, TF(w) = 0, and (3.9) is true as 
well. Our proof is complete since all the trilinear functions are linear combinations 
of those functions tested above. D 

Now we are in a position to prove our theorem. 

Proof of the Hh error estimate. By Theorem 2.1, ah(*, ) is uniformly Voh-elliptic. 
Hence, by the second Strang lemma [7, 25], we have 

(3.10) 1fu - Uhfll,h ? C [inf ||-Vhvlh + sup ]h,h 
LVhEVOh 0:AVhEVOh ||Vhl|l,h 
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where dh: H2 (9) x H (9) > IR is the nonconforming error functional defined by 

(3.11) dh(p, v) = ah((p, V) -(40 V), 0 E H2(9), v E Hh(Q), 

and where ? is the differential operator defined in (1.1). Since u = 0 on 0?, and 
1 G H2(9) C-+ 0(Q), we have that Ihu E Voh. Thus, Theorem 3.1 leads to the 

estimate 

(3.12) inf 1fU - Vhfll,h ?< fU - 'hUh,h < ChIluJf2,9. 
Vh E/Oh 

To estimate the error functional dh(., '), we fix an arbitrary function v= Vh E Voh. 
Since u E Ho'(9) n H2(Q) is the solution to (1.2), by integration by parts, we get 

dh(u v) = 
0 

0}a 
v 

0iu v U03U 
av 

1dxdydz h( U Rtl : a, + a2 YY + a3-- + CUV - fVdyz 

REi7h a9x 9 O9y O9y 9z Oz/ 

(3.13) 

= S I a-9 vn dS + , a2 v9Un2dS+ a3 vn3dS 
REhR a9x REhR 

9 
REmhR 

9 

I1 + I2 + I3, 

where n = (ni, in2, n3) is the unit outer normal to the boundary aR of an element 
R E fh. 

By virtue of the definition of the Vht- and Vh-approximations, we have 

RE rh /ER 09X 

- SF S jX V -TF(v)] nldS 
REmh face FC&R 

(3.14) = E E S Ia, - aidxdydz I V-TF(v)]>ndS 
RErh face FCaR iF\ J x 

+ 5 (fadxdydz) I F[v-TF(v)] n1dS 
REmh face FC&9R 

I4 +I5- 

It follows from the Cauchy-Schwarz inequality, Lemma 3.4 and Lemma 3.5 that 

II41=2. 2 ha, - aldxdydz [ v - TF(v)] njdS 
(3.15) RErh face FC&R F JR 9x 

< Ch ju12,Qflvfl1,h. 

To estimate I5, we first consider the Vha-approximation. In this case, since TF(v) = 

fF v dS, by the Cauchy-Schwarz inequality and Lemma 3.4, we have 

II51 a~s TRld1xdydzLL j4O v - TF(v)J njdS 
REmh face FC&R 

a 

(3.16 - RE F (JR aldxdydz) I - TFT(%v)] [v-TF(v)] ndS 
KREh FCaR -ax axf ) 

< Ch jJUlj2,QjjVjj1,h- 
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In the case of the Vrp-approximation, we fix an element R = [a - r, a + r] x 
[b- s, b + s] x [c-t, c + t] E fh and consider its two opposite faces F? = {a ? r} 
x [b-s, b + s] x [c-t, c + t] with n, = n? = ?1. We then have by (2.10), by the 
Cauchy-Schwarz inequality, and by the quasi-uniformity of the partitions Th that 

I u 

v [V-TF+ (v)] n+dS + J 
a [v -TF_ (v)] n_dS 

fb sfc t3&(a + r, y, z) [v(a ? r, y, z) -v(a + r, b, c)] dydz 
b-s c-t fb+s ~c+t &u(a +r, y, z) 

(3.17) - bs]- x [v(a - r, y, z) - v(a, - r, b, c)] dydz 

[b+s c+t [au(a + r, y, z) au(a - r, y, z) 1 

b-s c-t [ ax ax J 
F FYv(a + r y z) Z z + v(a + r, bZ ') 

dy+i dzi dydz 
[b ay az 

< Ch 2Iu|f2,1,R1IVI|1,1,R < ChI1uII2,RI|VIIl,R. 

Consequently, by rearranging the terms in the summation I5, we obtain the estimate 
for the Vh,-approximation 

(3.18) II51 < ChI|uII2,fI|v1l1,h. 

It follows from (3.14)-(3.18) that 

|I11 < Chj|8jj2,fQ||Vjj1,h- 

Similar estimates hold for I2 and I3. We then obtain by (3.11) and (3.13) the 
following estimate 

dh3(1, Vh)I _ah(U, Vh) - (u, Vh)I 

? ChI|uII2,QI|vhl1,h, VVh E Voh. 

This, together with (3.10) and (3.12), leads to (3.3) with m = 1. The first part of 
the proof of the theorem is finished. 

Proof of the L2 error estimate. We follow the nonconforming version of the Aubin- 
Nitsche argument [21, 23]. Let g E L2(Q). By Theorem 1.1, there exists a unique 

(Tg E Ho'(s) n H2(Q) such that 

(3.20) Lug =, in Q, 

which by Theorem 1.1 satisfies 

(3.21) IIWgII2,Q ? CIlgIloQ. 
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It is easy to verify, for any ?/h E VOh, that 

(U - Uh, g) = ah(U - Uh, p9 - /h) - dh(U, Pg -O h) - dh((Pg, U - Uh)- 

Consequently, 
(3.22) 

1-uh-IOQ0 = sup (U -Uh,) 
OgEL2(Q) 11gJ104, 

< sup 1 inf [Iah(U-Uh - g-Oh)| 
OgEL2(Q) IIgIIoJS OhEUOh 

+ Idh(U, (Pg -/h) I + ldh ((Pg, U -Uh)I I 

Fix g E L2(Q). Let Woh C C(Q) n H3 (Q) be the trilinear finite element space 
over the partition rh. Denote by Qh C(O) Woh the corresponding trilinear 
interpolation operator. We choose 'Vh =Ih(Qh(g) E VOh. By the Hh error estimate, 
Theorem 3.1, the well-known interpolation properties of the operator Qh [7], and 
(3.21), we have 

|ah(U - Uh, (Pg - /h) < C jju - Uhtlh 1j(Pg - Oh)hI lh 

< Ch 11U112,Q (I|sog - QhSPgI| Q + IQhPg -Ih(Qh(Pg)|l,h) 

(3.23) K Oh~llqsll2 uQ (I(9112Q + IIQh(P|12 h) Ch2 11U112,Q 119110,Q 

Since Qh(P9 E H (fQ) and u E Ho (Q)nH2(2) is the solution to (1.2), by denoting 

Xh = Qhg - Oh, we have 

dh (u, (Pg -' h) = dh (u, Qhfg - h) 

au au au 1 
(3.24) XhE1 ?aR~al e3a n+a2 -jXhn2+a3a-Xhn3J dS 

-J1 + J2 + J3. 

On a face F C 0R for an element R E Th, we have by (3.9) that fF XhdS = 0. 
Hence, since Qh(g E 0(Q), by the same argument as in the proof of the HI error 
estimate (cf. (3.14), (3.16)) we have 

z 8uR Lz LE I aX 

= z , JF&h, d X _ - Xn dd 
RErh face FC&R 

+ Ej (a, - a X- _ dS)XhnldS 
RErh face FC&R IFaX = E T R ( U au 

Xh nd 
RErh face FCaR O F~~x 5_ 

R) 
au ' = j (a,-al - f dXh- tXh dSf n dS 

RErh face FC&R F / 

+ E E al~R JF au8- dS)(h Xh dS) ni dS 
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where 

RR 

Therefore, by Lemma 3.4, the Cauchy-Schwarz inequality, Theorem 3.1, the prop- 
erties of the operator Qh, and (3.21), we get 

J CZ Z<cE E (hllVU|OF? + $-u 0f adS Xh) XhdS 
REmr face FE&R 0XJF9X O,F /0F ,F 

(3.25) 
< ChiluHj2,D 1Xhjl,h < Ch2 1U112 ||g11 2 ? Oh2 u||2,(29g11O2 

Similarly, 

(3.26) IJ21 + IJ31 ? Ch2 21uII 2,D11g1o ,D. 

Now it follows from the fact QhU E Hol (9) that 

(3.27) dh ((Pg,U - Uh) = dh ((pg, QhU - IhQhU) + dh ((pg, IhQhU - Uh)= J4 + J5. 

By the same argument used in estimating dh (u, 0g - 'Vh) (cf. (3.24)-(3.26)), we 
obtain 

(3.28) IJ41 - ldh (9Og, Qhu - IhQhU) I 

( Oh2<h11Pg911242 IlQhUI12,h <Ch Oh2 14o,9 HuH2,4 

Denote v = IhQhU - Uh E Voh. Replacing u by (og in (3.19), by the Hh error 
estimate, Theorem 3.1, the known properties of the operator Qh and (3.21), we 
then have 

I J51 =-I dh (pg, V) I< Ch H29112 Q 11V1 1,h 

(3.29) < Chjgjjo,9 (11IhQhu - QhiU1,h + i?QhU - UH11,D + ?1U - Uhhlh) 

< Ch2 HuH242 ff~H0,9 

Finally, the L2 error estimate (3.3) with m = 0 is a direct consequence of (3.22)- 
(3.29). D 

4. CONNECTION WITH MULTILINEAR FINITE ELEMENTS 

In the previous proof, we made use of the piecewise linear function IhQhU several 
times as an approximation function of u. This makes some connection between the 
considered nonconforming elements and the conforming multilinear elements. Fur- 
thermore, it is in fact true that all the piecewise linear functions in VOh approximate 
the solution u well enough. 

To be more precise, let Woh C 0(Q) nHo' (9) be again the trilinear finite element 
space over the mesh fh. By the proof of Lemma 3.6, we know that all the functions 
in the subspace IhWoh C Voh are piecewise linear functions. Furthermore, by 
taking the boundary condition into account, it is easy to see that the operator 
Ih WOh - IhWOh is in fact one-to-one and onto. Thus, the subspace IhWoh C Voh 
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has the same number of degrees of freedom as the trilinear finite element space Woh 
does. Now by the Lax-Milgram lemma, there exists a unique Uh E IhWoh such that 

(4.1) ah (Uhv vh) = (f Vh), VVh E IhWOh. 

We realize that Uh is in fact the projection of the finite element solution Uh E VOh 
into the subspace IhWoh, since by (3.2) and (4.1), we have 

(4.2) ah (Uh- Uh, Vh) = O, Vvh E IhWOh- 

Now let us write the error 

(4-3) U-Uh = (U-IhU') + (IhUh 

where u' E Woh is the trilinear finite element approximation of u, i.e., 

(4.4) a (U'h, Wh) =(f, Wh), VWh E WOh- 

By the known results on this approximation ut [7], and by Theorem 3.1, we get 

(4.5) fU - Ihuht! 11,h ?< K|U - U ? j + I -IhUhj 1 h < Chffuff2,D2 

Notice that Ah =IhUt-4-h E IhWoh C Voh. By (3.1), (4.5), (3.19) and the known 
results on '4, we have 

(4.6) h!,h, ? iah(Ah, Ah) = ah (IhUt - u, Ah) + ah (U -Uh, Ah) 

< C IhUh- 1h !!Ah!!1,h + fdh(u, Ah)! ?< Ch!!u!!2,9|!Ahl1,h. 

It follows from (4.3)-(4.6) that 

(4.7) ffU - Uh11h < ChIfUI12,9- 

Now, by the definition of dh(.,*) (cf. (3.11)) and (4.2), we have for any g E L2(Q) 
and any 'bh E IhWOh that 

(4.8) (U - Uh, g) =(U - uh, 9) + (Uh - Uh, g) 

=(U- Uh, 9) + ah (Uh - Uh, IPg - 'Vh) - dh ((pg, Uh - Uh) 

Setting V'h = IhQhOg E IhWoh in (4.8), we have 

(4.9) fah(Uh -Uh, 9Pg - 'Vh)f ? CfUh - UhH l,h 119g - IhQh(Pglllh 

C (lUh- U!1lh + 1U - Uh111h) (11Og - QhWg111,h + If Qhg - 
IhQh(gfll,h) 

*< Oh2 fuf2,< (fo!9 ? ffQh(gLQ) < Ch2ffuff.2,Dffgff,09, 

where we used the known properties of Qh, Theorem 3.1, Theorem 3.3, (4.7) and 
(3.21). Replacing u by (g in (3.19), we then get by (3.21), Theorem 3.1 and (4.7) 
that 

!dh ((Pg, Uh - Uh)I < Ch 11fP91129 ffUh - Uh1l,h 

(4.10) < Chffgffo,D (ffUh - U! 1i,h + fU - Uh||l,h) 

< Ch2 ffUff2,D ffgffo9. 

We have in fact proved, by (4.7)-(4.10) and Theorem 3.3, the following 

Theorem 4.1. Let u E Ho'(Q) n H2(Q) and Ulh E IhWoh be the solutions to (1.2) 
and (4.1), respectively. Then, 

ffU - Uhff0, + hffu - Uhffl,h < Ch ffUff2,D. 
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5. A SUPERCONVERGENCE ESTIMATE 

We first give a superconvergence estimate for the interpolation error gradients. 
Denote by CR the center of a rectangular element R E Fh. 

Lemma 5.1. For any R E Th, we have 

(5.1) V(v - IhV)(CR)l < Ch jV3,oo,R, Vv W3' (R). 

Proof. Let R = [-1, 1] x [-1, 1] x [-1, 1]. Define: F W3' 0(R) > ]R by 

F = 0(V- Lb)(0) v E W 00(R), 

where 0 = (0, 0,0 ) and I is the interpolation operator over R for the considered 
elements. By the imbedding W3', (R) --+ C1(R), we have 

(5.2) |F(i) < W3,oo f i). 

Now the basis functions for our elements over R can be easily obtained by setting 
a = b = c = 0 and r = s = t = 1 in (2.4) and (2.6), respectively. By their properties 
(cf. (2.3), (2.7)) and by the Taylor expansion, a series of calculations then lead to 

(5.3) F(P) = V V1P E P2(h), 

where P2(R) is the set of all polynomials over R with degrees at most 2. It follows 
from (5.2), (5.3) and the Bramble-Hilbert lemma that 

|F(V)| < CIVI300R) V E W3,00o(fR). 

This, together with the affine transformation from R to R (cf. (3.7)), leads to 

lax (v -Ihv) (CR)lI < Ch-1 |F(f) | < Ch 2 v 0R. 

Similar estimates hold for &y(v - Ihv) and &9(v - Ihv). D 

In the rest of this section, we will only consider the Vha-approximation, i.e., the 
averaged element approximation, to the solution of the model problem 

(5.4) 
-Au = f, in 9, 

u = 0O on 9Q. 

The following result shows that the nonconforming error functional dh(, .), as de- 
fined in (3.11), is of one order higher than usual. Hence the nonconformity, in this 
case, is weak. 
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Lemma 5.2. Let u E Hol(Q) n W3'0(Q) be the solution to (5.4). Then, 

(5.5) 1 dh(U, Vh)| I< Ch 2|1JU13,oo,S? JVh 11 ,h, bWh E Voah 

Proof. Fix v = Vh E Voh. We have as before that 

(5.6) dh(U, v) = E J (Avnj + vn2 + j-vn3) dS K1 + K2 + K3. 

By virtue of the Voah-approximation, we can further write 

(5.7) RE face 

5? E JF AX 
9U 

[V -TF(v)] njdS, 
RE~rh face FEaR 

where MF is the center of a face F. Fix R = [a-r, a+r] x [b-s, b+s] x [c-t, c+t] E Th 

and consider its two opposite faces F? = {a + r} x [b - s, b + s] x [c - t, c + t] with 
nj = n? = ?1. An application of the Bramble-Hilbert lemma leads to the estimate 

[&2U(X, y, z) _ 2U(X , b, c)12 (5.8) J [d&2 a J xdydz < Ch 5 fuII2R 

It then follows from (2.10), the Cauchy-Schwarz inequality, (5.8) and Lemma 3.5, 
that 

-ax E UM ] [v -TF+ (v)] n+dS 

+ [ax 0U(XF ] 
[V - TF (v)] ndS 

= Jb+s c+t {[ u(a + r, y, z) &u(a + r, b, c) 

| b-S Jct a X ax 

&x9u~a &x 

y) z) _ 08(a a r) b) ) ] } [v(a + r, y, z)-TF+ (v)] dydz 

b+s fc+t fa+,ra2u(x, y'z) 02u(x,b,c)1 ] 

I Jb-slJc-t l Ja-r[ L aX2 ax2 J dx 

[v(a + r, y, z) -TF+ (v)] dydz 

< Ch jJUl13,ooSc V2j1,iR* 

Consequently, by a rearrangement of the terms in the summation K1, we have 

jK1 j < Ch7 1JU113,0ooS E IIV111,R < Ch JjUjj3,oo,S ll~jl1,h, 

REh 

where we also used the Cauchy-Schwarz inequality and the fact that 

(5.9) JThI S 1 < Ch3. 
REh 

In the two-dimensional case, h3 should be replaced by h2. Similar estimates hold 
for K2 and K3 as well. Hence, (5.5) follows. Ol 
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Lemma 5.3. Let u E Ho(9) n W3', (9) be the solution to (5.4) and Uh E Voah its 
Voah-approximation. Assume that all the elements in fh are cubes. Then 

(5.10) IIIhU - UlhIl,h < Ch2 I|UII3,oo,D- 

Proof. Denote -Yh IhU -Uh E Voah Since each element in Th is assumed to be 
a cube, it is easy to see that -Yh is piecewise harmonic. On the other hand, since 
Ih = Iha is the interpolation operator for the Vha-approximation, we have 

j(Ihu - u) dS = 0, VfacesF C oR, VR E Th. 

It then follows from (2.10) that 

ah(IhU - U, 7Yh) = E J V(IhU - U)V-yhdxdydz 
RE~rh 

(5.11) - S [(Ihu-u) a njdS 
RErh face FE&R LF x 

?f(I 09Yhd 09Dr7~h + (IhUF-) 0 Y n2dS +-F I -U) a n3dS= 0. 

Now, by (3.1), (5.11) and Lemma 5.2, we have 

||Yh |h1,h < ah (-Yh, -Yh) = ah (IhU - Uh, -Yh) 

= ah(U - Uh yh) = dh(U, yh) < Ch2 IIUI3,oo,DI-YhII1,h, 

leading to (5.10). 

Now we present the main result in this section. 

Theorem 5.4. With the same assumption as in Lemma 5.3, we have 

_ _ ~~~~~~~~~~2 
(5.12) [ V V(U - Uh)(CR)f h3 < Ch2ffUff3 oo9. 

LRE'rh 

Proof. By Lemma 5.1, Theorem 3.2 and Lemma 5.3, we have 

1 

L V(u - Uh) (CR) | h3 
-RE-rh 

< C IV( - IhU)(CR)f h3 + E IV(IhU - Uh)(CR)l h3 
-RE~rh RErh 

<C 3 +h3 (h-3 uIhu-UhIIl,R) 2 

compleing te proRErh 

< Ch2I|lUII3,oo , i 

completing the proof. 
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Now let us turn back to both the Vt'- and Vh-approximations with general 
partitions of the solution to the general problem (1.1). Recall that Qh: C(Q) 
Woh is the interpolation operator for the trilinear finite element. We can easily 
obtain, if the solution u is smooth, that 

(5.13) IV (U - QhU) (CR)l + IV (U - IhQhU)(CR)l = 0 (h2). 

As discussed in ?4, the considered elements are connected with the conforming 
multilinear finite elements through the subspace IhWoh. Thus, the estimate (5.13), 
Lemma 5.1 and the known superconvergence results (cf. [20]) on the multilinear 
elements naturally lead to a conjecture on the pointwise superconvergence estimates 
for the error of the gradient: if the solution u is smooth enough and the partitions 
Th are suitably regular, then 

(5.14) max IV (U-uh) (CR) = 0(h 2). 

In its discrete average form, the superconvergence estimate (5.12) for the simplest 
case makes the estimate (5.14) believable somewhat. However, compared with a 
recent work on higher-order error estimates on the nonconforming Wilson finite 
element [4], the proof or disproof of (5.14) will be more difficult since our elements 
do not have any conforming counterparts, though there is some connection between 
our elements and the conforming multilinear elements. 

6. EFFECT OF NUMERICAL INTEGRATION 

We define on the reference element R = [-1, 1] x [-1, 1] x [-1, 1] the numerical 
integration scheme 

p ~~~~~~I 
(6.1) ] Q < aC)dfd'rdC - gCi A(Qi), 3 E 0(R), 

R i=1 

where cZi > 0, Qi-(i, T, (i) E R, i = 1,... , I, and I is a positive integer. Let us 
denote 

P = Span{ 1,t, q, (I 42 _q2 n 2 -_ 2 

We shall assume that the quadrature scheme is exact on P, i.e., 

(6.2) Iq I,7' () dfd(dC = I i)I P E P. 
R i=1 

and that the set of quadrature points 

(6.3) {Qi}> in (6.1) contains a Pi(R)-unisolvent subset, 

where P1(R) is the set of all linear polynomials over R. 
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The conditions (6.2) and (6.3) are satisfied by the quadrature schemes 

Scheme 1: I = 6, all - = -4, {Qi}?1~l = {(+q, 0,0) , (0, +4,0) , (0,0, ?4)}; 

lhScheme 2: I = 8, allow , = {() ) 'i A 

where 0 < q < 1. The computations for the dynamics of martensitic microstructure 
reported in [18] used Scheme 1 with q = 1, in which case the nodes of the quadrature 
scheme are identical to the nodes of the finite element with respect to the Vh- 
approximation. Scheme 2 with q = 1/V'3 is the Gaussian quadrature over R with 
eight nodes of quadrature. 

Now, for an element R _ [a - r,a + r] x [b - s,b + s] x [c - t,c + t] E Th, 

let KR: R - R be the invertible affine mapping given by (3.7). Then, the 
quadrature scheme (6.1) induces automatically the following quadrature scheme 
over the element R E Th, 

(6.4) g(x,A, z) dxdydz E Si,R 9(Qi,R)i 9 E C(R), (6.4) JR I= 
where 

(6.5) Wi,R= det(VKR) N, Qi,R = KR(Qi), i = 1,... , I. 

To apply the numerical quadrature to the finite element formulation (3.2), in 
what follows we assume that in (1.1) c E C(Q) and f E C(Q). Let us now define 

a*(',') : Vh X Vh R by 

F aVh OWh ( (9Vh &Wh'\ 

ah(hWh) = E iR Ox Ox aW ( a) ? 
y 

(QiR) 
(6.6) RErh i=1// 

+ ( Vh 
az 

) (QiR)+(CVhWh)(QiR)1, Vh,Wh e 

and define fh: Vh R [ by 
I 

(6.7) fh*(Vh) = 5 Wi,R (fVh)(QiR), Vh E Vh. 
RErh i=1 

Obviously, a*(,.) and fh* (.) are discrete approximations for ah(,.) and fh ) 
(fd), respectively. 

By the uniform VOh-ellipticity of ah(.,.) given by (3.1) and the conditions (6.2) 
and (6.3), we have the following uniform VOh-ellipticity of a*j,.) (cf. Theorem 4.1.2 
in [7]). 

Lemma 6.1. There exists a constant a* > 0, independent of h, such that 

(6.8) a*(Vh,Vh)> a? IIVh II', VVh E VOhn 

It is now a direct consequence of the Lax-Milgram lemma that there exists a 
unique u* E VOh, the discrete solution to (1.2), such that 

(6.9) ah(Ulh,Vh) = fh(Vh), VVh E VOh. 

Our main result in this section is that, with a certain smoothness of the co- 
efficients in (1.1), the discrete solution uh E VOh converges to the exact solution 
u E Ho'(s) n H2(Q) with the same rates as the solution Uh E VOh does. 
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Theorem 6.2. Assume that in (1.1), in addition, c E W1' ?(Q) and f E W' ?(Q). 
Let u E Ho(9) n H2(Q) and u* E Voh be the solutions to (1.2) and (6.9), respec- 
tively. Then, 

(6.10) ffu - U1lll,h < Chlf fffl,oo,2. 

Theorem 6.3. If the coefficients a1, a2, a3, and c, and the term f are all in 
W2', (Q), then 

(6.11) ffu - U*f10 fO < Ch21fffl2,00,9. 

To prove these two theorems, we need to estimate the errors induced by the 
quadrature schemes (6.1) and (6.4). Thus, we first define the quadrature error 
functionals 

(6.12) E(3) ]Jd~drd - ZJi.(Qi), 3 E 0(R) 

and 
I 

(6.13) ER(g) IR - ZwiRg(QiR), g E C(R), R E Th. 
R~g) - dZ - WiR 9 (i= 1 

Obviously, 

(6.14) ER(g) = det(VKR)E(?), 3 = g ? KR E C(R). 

Recall that PR is the finite element polynomial space over the element R E Th 

(cf. (2.1)). 

Lemma 6.4. Let a1, a2, a3 and c be given in (1.1). Suppose c E W1'0 (9). Then, 
for any R E Th and any v, w E PR, we have 

ER (av + ER (a2 )+ ER (a3- +IER(CVW)f 
(6.15) RaOx Ox ? k 9y ay2 ,IZ0 

< Ch||vj|2,RH|W||1,R. 

Proof. Let R [a-r, a + r] x [b-s, b + s] x [c-t, c+ t]. As before, let the mapping 

KR R > R be defined by (3.7). Write f3 = a o KR for so E W1',?(R). Since the 
L? and L2 norms are equivalent on the finite-dimensional space PR, we have that 

(6.16) tE(sjP) < C 1k1(Hjc,, [0RIIPI'IO 7 VC E W1(fR), P E PC 

Replacing 3 in (6.16) by S? + a with c an arbitrary constant, by (6.2) we obtain 

|E ((9P)I < C Ainf IPf + 41,0' R IIIIO (6.17) c=constant ' 
+ 

< C IS011,00,R HIPII0,AR v OW E W1 5(R), P c PR 

Now let a E {ai,a2,a3,c}, q {v, ,a v}, and p E {w, ,w a}, where v, w E PR. 

Note that aw aw E PR if w C PR. Setting S = aq in (6.17), by (6.14), (3.7) and 
Theorem 3.2, we get 

ER(aqp)I < Ch3 < Ch h3 |IPIOLR < C? aqj1,oo,RRPfl0,R 

(6.18) < Ch2 jjqjjj,ooR||P||O,R ?< Chjjqj1,Rllpjjo,R ? Chjjvjj2,RjWjl1,R. 

This proves (6.15). 
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Lemma 6.5. Suppose f E W1''(Q). Then, for any R E Th and any v E PR, we 
have 

(6.19) IER(fv)l < COh j1f j1,co,RIIVII1,R. 

Proof. Since E(S) = 0 for any constant polynomial ,o, by the Bramble-Hilbert 
lemma we have 

|E(D|< c 
1 wlRXF R) 

Taking S-b = fi, by (6.14) and Theorem 3.2 we have 

IER(fv)I Ch3 E (fv) < Ch 3 fV <Ch4 Ifv1l, ,R 

< Ch |fI||1,oc,RIIVIIl,oR < Ch2 lif IJ1,oo,R IIV 1,R, 

completing the proof. l 

Lemma 6.6. Let R E Th and a E W2, ,(R). Then for any v, w E PR we have 

(6.20) IER(av)| < Ch 2|a|f2,oo,RI|Vjf2,R, 

(6.21) IER(avw) I < Ch2 jjaj2,ooRjIjIV2,RIjwII2,R. 

Proof. By (6.12) and the imbedding H2(R) -?> C(R), we have 

(6.22) AEav) ?CIIav a2,R 

By (6.14), (6.2), the Bramble-Hilbert lemma, and (3.7), we thus get 

(6.23) JER(av)J < Ch3 iaVj2 < < h2 javj2,R C Oh IIaII2,,RIoVII2,R, 

obtaining (6.20). Now, replacing a in (6.20) by aw, we have, by Theorem 3.2, that 

JER(avw)j < ChO 1IawI2,oo,RIjVII2,R < Ch2 jjajj2,oo,RI|WII2,o,R1IVlj2,R 

< Ch 2IajI2,oo,RI|VII2,RIjWII2,R, 

leading to (6.21). 0 

Notice that in the two-dimensional case, the orders h2 in (6.19) and h2 in (6.20) 
should be replaced by h2 and h3, respectively. 

Proof of Theorem 6.2. By (6.8), (3.2), (6.9), Lemma 6.4, and Lemma 6.5, we have 

_t |-Uh 112 < a* (Ubh -U* Uh -U*) 

= [ah (Uh, Uh - U*) - ah (Uh, Uh - U*)] + [fh (Uh - U*) - fh* (Uh - U*)] 

<Ch S IIUhII2,R |Uh - Uh*11,R + Ch2 S If f looR |Uh -Uh1 1,R 
RGTh RETrh 

<Ch (hIUhII2,h + I|f l1,oo, Q) ||Uh - Uh l1l,h I 
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where we also used the Cauchy-Schwarz inequality and (5.9). It then follows from 
Theorem 3.1-Theorem 3.3 and Theorem 1.1 that 

HU - Uh*1,h < |U - Uhhlh + JHUh - Uh*1,h 

< Chl uHI2,Q + Ch (JUh - IhUI12h + 1IhU - U112h + 11f 111,,9o ) 

< Ch (||U|2,Q + 11f 111,,So ) < ChIlf 11,00,D 

which is the result of Theorem 6.2. 

Proof of Theorem 6.3. For any g c L2(Q), by (3.2) and (6.9), the following identity 
holds, 

(6.24) (Uh - uh, g) = ah (Uh - u 9 'Ogh - h) - [ah (U*, O h)- a* (Uht, Oh)] 

+ [fh (Vh) - fh (4h)] V 'h E VOh, 

where '09h E Voh satisfies 

ah (@9h vh) = (gvh), VVh E VOh, 

and ,0g E Ho'(Q) n H2(Q2) satisfies (3.20) and (3.21). Consequently, 

Hu - Uh10, < ? u - Uh 1oh + sup 1 inf [ ah (Uh Uh, (9h - Ph) 
O:AgEL2 (9) 11g11042 'PhEClOh 

(6.25) + Iah (Uh, h) -a* (Uh) I + IfhA (h) -fh (Oh) ] - 

Now let us fix g E L2(Q) and choose Oh = Ih fog. By Theorem 3.1, Theorem 6.2, 
Theorem 3.3 and (3.21), we get 

(6.26) lah (Uh - Uh*, vgh - Vh) ?C 0 Uh - U-h11,h o9hg- hOh 1,h 

<OCh2 11f jjj,~,9S 11gHl09. 
It follows from the definitions of ah(., .), a*(., .), and ER(-) that 

ah (u* Oh) - a* (U, Oh) I < E[R a1 + ER a2 

h h 1,~~ ~ O~ &j 
+ |ER a3 a 0 + |ER (CU~hh) I 

Notice that hU R,09hl C PR, for R E Th, where 0= aay or o9. Therefore, by 
Lemma 6.6, the Cauchy-Schwarz inequality, Theorem 6.2, (3.21) and (1.3), we have 

ah (uhbh)-ah (Uh/h)l < Oh E ||U~h2,R kj'h12,R < Oh IUhUI2,h 11IhP9112,h 
Re-h 

< Ch2 (11U12,9? + H1f H11,,o9) H1glHo04 

(6.27) < Ch2 11f 111,00', jjgj09?. 
By Lemma 6.6, (5.9), Theorem 3.1 and (3.21), we have 

Afh (Ph) - fh (Ph)| < C E |ER (f Ph)I < Ch7 E 11f ||2,o,R kL0h 12,R 
(6.28) RETh RE-h 

< Ch 1f 112,oo,9 kjh112,h < Ch f2,ooS? llgllo,- 

Now (6.11) is a direct consequence of the combination of (6.24)-(6.28) and Theorem 
3.3. The proof is complete. O 
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